binary-trees Haskell GHC #4 program
source code
--
-- The Computer Language Benchmarks Game
-- https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
--
-- Contributed by Don Stewart
-- Basic parallelization by Roman Kashitsyn and Artem Pelenitsyn
-- Tail call optimizations by Izaak Weiss
-- Compact region optimization by Jaro Reinders
--
import System.Environment
import Data.Bits
import Text.Printf
import Control.Parallel.Strategies
import GHC.Compact
--
-- an artificially strict tree.
--
-- normally you would ensure the branches are lazy, but this benchmark
-- requires strict allocation.
--
data Tree = Nil | Node !Tree !Tree
minN = 4
io s n t = printf "%s of depth %d\t check: %d\n" s n t
main = do
n <- getArgs >>= readIO . head
let maxN = max (minN + 2) n
stretchN = maxN + 1
-- stretch memory tree
let c = checkPar4 (makePar4 stretchN)
io "stretch tree" stretchN c
-- allocate a long lived tree (in a compact region)
long <- compact (makePar2 maxN)
-- allocate, walk, and deallocate many bottom-up binary trees
let vs = (depth minN maxN) `using`
(parList $ evalTuple3 r0 r0 rseq)
mapM_ (\((m,d,i)) -> io (show m ++ "\t trees") d i) vs
-- confirm the the long-lived binary tree still exists
io "long lived tree" maxN (check (getCompact long))
-- generate trees of depth @d@, @d+1@... until @m@
depth :: Int -> Int -> [(Int, Int, Int)]
depth d m
| d <= m = (n, d, sumT d n 0) : depth (d+2) m
| otherwise = []
where n = 1 `shiftL` (m - d + minN)
-- allocate and check @i@ trees of depth @d@
sumT :: Int -> Int -> Int -> Int
sumT d 0 t = t
sumT d i t = sumT d (i-1) (t + a)
where a = check (make d)
-- traverse the tree, counting up the nodes
check :: Tree -> Int
check t = tailCheck t 0
tailCheck :: Tree -> Int -> Int
tailCheck Nil !a = a
tailCheck (Node l r) !a = tailCheck l $ tailCheck r $ a + 1
-- traverse and count nodes in parallel (4-threaded version)
checkPar4 :: Tree -> Int
checkPar4 (Node (Node ll lr) (Node rl rr)) = all + alr + arl + arr + 3 `using` strat where
all = tailCheck ll 0
alr = tailCheck lr 0
arl = tailCheck rl 0
arr = tailCheck rr 0
strat v = do
rpar all
rpar alr
rpar arl
rseq arr
return v
-- build a tree
make :: Int -> Tree
make d =
if d < 10 then make' d else makePar2 d
make' :: Int -> Tree
make' 0 = Node Nil Nil
make' d = Node (make' (d - 1)) (make' (d - 1))
-- build a tree in parallel (4-threaded version)
makePar4 :: Int -> Tree
makePar4 d = Node (Node ll lr) (Node rl rr) `using` strat where
!d' = d - 2
ll = make' d'
lr = make' d'
rl = make' d'
rr = make' d'
strat v = do
rpar ll
rpar lr
rpar rl
rseq rr
return v
-- build a tree in parallel (2-threaded version)
makePar2 :: Int -> Tree
makePar2 d = Node l r `using` strat where
!d' = d - 1
l = make' d'
r = make' d'
strat v = do
rpar l
rseq r
return v
notes, command-line, and program output
NOTES:
64-bit Ubuntu quad core
The Glorious Glasgow Haskell
Compilation System,
version 9.10.1
LLVM version 18.1.3
Sun, 10 Nov 2024 20:08:20 GMT
MAKE:
mv binarytrees.ghc-4.ghc binarytrees.ghc-4.hs
~/.ghcup/bin/ghc --make -fllvm -O2 -XBangPatterns -threaded -rtsopts -fno-cse -package ghc-compact binarytrees.ghc-4.hs -o binarytrees.ghc-4.ghc_run
Loaded package environment from /home/dunham/.ghc/x86_64-linux-9.10.1/environments/default
[1 of 2] Compiling Main ( binarytrees.ghc-4.hs, binarytrees.ghc-4.o )
binarytrees.ghc-4.hs:30:31: warning: [GHC-63394] [-Wx-partial]
In the use of ‘head’
(imported from Prelude, but defined in GHC.Internal.List):
"This is a partial function, it throws an error on empty lists. Use pattern matching, 'Data.List.uncons' or 'Data.Maybe.listToMaybe' instead. Consider refactoring to use "Data.List.NonEmpty"."
|
30 | n <- getArgs >>= readIO . head
| ^^^^
[2 of 2] Linking binarytrees.ghc-4.ghc_run
rm binarytrees.ghc-4.hs
17.83s to complete and log all make actions
COMMAND LINE:
./binarytrees.ghc-4.ghc_run +RTS -N4 -K128M -H -RTS 21
PROGRAM OUTPUT:
stretch tree of depth 22 check: 8388607
2097152 trees of depth 4 check: 65011712
524288 trees of depth 6 check: 66584576
131072 trees of depth 8 check: 66977792
32768 trees of depth 10 check: 67076096
8192 trees of depth 12 check: 67100672
2048 trees of depth 14 check: 67106816
512 trees of depth 16 check: 67108352
128 trees of depth 18 check: 67108736
32 trees of depth 20 check: 67108832
long lived tree of depth 21 check: 4194303