source code
--
-- The Computer Language Benchmarks Game
-- https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
--
-- Based on code by Dave Fladebo, Eckehard Berns, Heiner Marxen, Hongwei Xi,
-- and The Anh Tran, and on the Java version of fannkuchredux by Oleg Mazurov.
-- Updated by Jonathan Parker and Georg Bauhaus, Nov 2012.
--
with Ada.Command_Line;
with Ada.Text_Io; use Ada.Text_Io;
with System;
procedure Fannkuchredux is
Multitasking_Desired : constant Boolean := True;
type Fann_Int is mod 2**System.Word_Size;
pragma Assert (Ada.Command_Line.Argument_Count = 1,
"Exactly one input argument is required.");
N_image : constant String := Ada.Command_Line.Argument (1);
N : constant Fann_Int := Fann_Int'Value (N_image);
pragma Assert (N > 1, "Input argument N must be integer > 1.");
Fann_0 : constant Fann_Int := 0;
Fann_First : constant Fann_Int := Fann_0;
Fann_Last : constant Fann_Int := Fann_0 + (N - 1);
subtype Perm_Index is Fann_Int range Fann_First .. Fann_Last;
type Permutation is array(Perm_Index) of Fann_Int;
-- The N! permutations are indexed from 0 to N!-1. The indices
-- and the factorials have type Perm_id_Range.
type Perm_id_Range is mod 2**System.Word_Size;
pragma Assert (N < 13 or System.Word_Size = 64);
pragma Assert (N < 21, "Input argument N must be integer < 21.");
subtype Enum_Index is Fann_Int range Fann_First .. Fann_Last+1;
type Enumeration is array(Enum_Index) of Perm_id_Range; -- holds N!'s
No_of_Tasks : constant := 12;
-- Using stnd setting of 12, Chunk_Size = (N! / No_of_Tasks) is even for N>3.
type Task_id_Range is range 1 .. No_of_Tasks;
type Checksum_Int is range
-2**(System.Word_Size-1)+1 .. 2**(System.Word_Size-1)-1;
procedure Swap (Perm1: in out Permutation; Hi, Lo: Fann_Int) is
Tmp : constant Fann_Int := Perm1(Hi);
begin
Perm1(Hi) := Perm1(Lo);
Perm1(Lo) := Tmp;
end Swap;
function Count_of_Flips
(Perm : in Permutation)
return Fann_Int
is
Lo_1st : constant Fann_Int := Fann_First + 1;
Hi, Hi_1st, Tmp : Fann_Int;
Flip_Count : Fann_Int := 0;
P_1st : Fann_Int;
Perm1 : Permutation;
begin
P_1st := Perm(Perm'First);
for i in Perm'Range loop
Perm1(i) := Perm(i);
end loop;
loop -- Flip until P_1st = Fann_First
exit when P_1st = Fann_First;
Flip_Count := Flip_Count + 1;
Hi_1st := P_1st - 1;
if Lo_1st < Hi_1st then
Hi := Hi_1st;
for Lo in Lo_1st .. Lo_1st+16 loop
Swap (Perm1, Hi, Lo);
exit when Lo+3 > Hi;
Hi := Hi - 1;
end loop;
end if;
Tmp := Perm1(P_1st);
Perm1(P_1st) := P_1st;
P_1st := Tmp;
end loop;
return Flip_Count;
end Count_of_Flips;
procedure Get_First_Permutation
(Perm_id : in Perm_id_Range;
Factorial : in Enumeration;
Perm : out Permutation;
Count : out Permutation)
is
d : Fann_Int;
p_id : Perm_id_Range := Perm_id;
Perm1 : Permutation;
begin
Perm := (others => Fann_Int'First);
Count := (others => Fann_Int'First);
for i in Perm'Range loop
Perm(i) := i;
end loop;
for i in reverse Fann_First+1 .. Fann_Last loop
d := Fann_Int (p_id / Factorial(i));
p_id := p_id mod Factorial(i);
Count(i) := d;
Perm1 := Perm;
for j in Fann_First .. i loop
if j+d <= i then
Perm(j) := Perm1(j+d);
else
Perm(j) := Perm1(j+d-i-1);
end if;
end loop;
end loop;
end Get_First_Permutation;
procedure Get_Next_Permutation
(Perm : in out Permutation;
Count : in out Permutation)
is
Rotation_Upper_Bound : constant Fann_Int := 17;
pragma Assert (Rotation_Upper_Bound >= Perm'Last);
pragma Assert (Perm'First = 0);
First, Next_First : Fann_Int;
i : Fann_Int := 1;
begin
First := Perm(1);
Perm(1) := Perm(0);
Perm(0) := First;
Count(i) := Count(i) + 1;
if Count(i) > i then
loop
exit when Count(i) <= i;
Count(i) := 0;
i := i + 1;
Next_First := Perm(1);
Perm(0) := Next_First;
for j in 2 .. Rotation_Upper_Bound loop
Perm(j-1) := Perm(j);
exit when j = i;
end loop;
Perm(i) := First;
First := Next_First;
Count(i) := Count(i) + 1;
end loop;
end if;
end Get_Next_Permutation;
procedure Get_Checksum_and_Flips
(Task_id : in Task_id_Range;
Factorial : in Enumeration;
Max_Flips : out Fann_Int;
Checksum : out Checksum_Int)
is
Perm_id, Perm_id_Min, Perm_id_Max : Perm_id_Range;
Flip_Count : Fann_Int;
Perm, Count : Permutation;
Chunk_Size : Perm_id_Range;
begin
Chunk_Size := Factorial(N) / No_of_Tasks;
pragma Assert (Chunk_Size mod 2 = 0);
-- so checksums work if No_of_Tasks>1.
Perm_id_Min := Perm_id_Range (Task_id - Task_id_Range'First) * Chunk_Size;
Perm_id_Max := Perm_id_Range'Min (Factorial(N), Perm_id_Min+Chunk_Size)-1;
-- for the First task: Perm_id_Min = 0; Perm_id_Max := Chunk_Size-1
-- Perm_id ultimately runs from 0 .. Factorial(N)-1
Get_First_Permutation (Perm_id_Min, Factorial, Perm, Count);
-- Initialize Perm and Count
Max_Flips := 1;
Checksum := 0;
Perm_id := Perm_id_Min;
loop
if Perm(0) > 0 then
Flip_Count := Count_of_Flips (Perm);
Max_Flips := Fann_Int'Max (Max_Flips, Flip_Count);
if Perm_id mod 2 = 0 then
Checksum := Checksum + Checksum_Int (Flip_Count);
else
Checksum := Checksum - Checksum_Int (Flip_Count);
end if;
end if;
exit when Perm_id >= Perm_id_Max;
Perm_id := Perm_id + 1;
Get_Next_Permutation (Perm, Count);
end loop;
end Get_Checksum_and_Flips;
task type Flip_Counter is
pragma Storage_Size (2**12);
entry Start
(Task_id : in Task_id_Range;
Factorial : in Enumeration);
entry Return_Result
(Partial_Flip_Count : out Fann_Int;
Partial_Checksum : out Checksum_Int);
end Flip_Counter;
task body Flip_Counter is
Task_id_Local : Task_id_Range;
Max_Flips : Fann_Int;
Checksum : Checksum_Int;
F : Enumeration;
begin
accept Start
(Task_id : in Task_id_Range;
Factorial : in Enumeration)
do
Task_id_Local := Task_id;
F := Factorial;
end Start;
Get_Checksum_and_Flips (Task_id_Local, F, Max_Flips, Checksum);
accept Return_Result
(Partial_Flip_Count : out Fann_Int;
Partial_Checksum : out Checksum_Int)
do
Partial_Flip_Count := Max_Flips;
Partial_Checksum := Checksum;
end Return_Result;
end Flip_Counter;
type Flip_Data is array (Task_id_Range) of Fann_Int;
type Chksum_Data is array (Task_id_Range) of Checksum_Int;
Flip_Count_Storage : Flip_Data := (others => 0);
Checksum_Storage : Chksum_Data := (others => 0);
Max_Flips : Fann_Int := 0;
Checksum : Checksum_Int := 0;
Factorial : Enumeration;
begin
if not (N > 3 or (not Multitasking_Desired and No_of_Tasks = 1)) then
Put_Line
("Set Multitasking_Desired = False and No_of_Tasks = 1 for N < 4");
raise Program_Error;
end if;
Factorial(0) := 1;
for i in Enum_Index range 1 .. Enum_Index'Last loop
Factorial(i) := Factorial(i-1) * Perm_id_Range (i);
end loop;
if Multitasking_Desired then
declare -- and launch 1 task for each t in Task_id_Range:
Counter : array(Task_id_Range) of Flip_Counter; -- the tasks.
begin
for t in Task_id_Range loop
Counter(t).Start (t, Factorial);
end loop;
for t in Task_id_Range loop
Counter(t).Return_Result (Max_Flips, Checksum);
Flip_Count_Storage(t) := Max_Flips;
Checksum_Storage(t) := Checksum;
end loop;
end;
else -- Sequential:
for t in Task_id_Range loop
Get_Checksum_and_Flips (t, Factorial, Max_Flips, Checksum);
Flip_Count_Storage(t) := Max_Flips;
Checksum_Storage(t) := Checksum;
end loop;
end if;
Max_Flips := 0;
for t in Task_id_Range loop
if Flip_Count_Storage(t) > Max_Flips then
Max_Flips := Flip_Count_Storage(t);
end if;
end loop;
Checksum := 0;
for t in Task_id_Range loop
Checksum := Checksum + Checksum_Storage(t);
end loop;
declare
C_Image : constant String := Checksum_Int'Image (Checksum);
begin
Put_Line (C_image(2..C_image'Last));
Put ("Pfannkuchen("); Put (N_image); Put (") =");
Put (Fann_Int'Image (Max_Flips));
end;
end Fannkuchredux;
notes, command-line, and program output
NOTES:
64-bit Ubuntu quad core
GNATMAKE 9.3.0
gcc (Ubuntu 9.3.0-10ubuntu2) 9.3.0
Mon, 04 May 2020 17:42:21 GMT
MAKE:
gnatchop -r -w fannkuchredux.gnat-3.gnat
splitting fannkuchredux.gnat-3.gnat into:
fannkuchredux.adb
gnatmake -O3 -fomit-frame-pointer -march=core2 -gnatNp -f fannkuchredux.adb -o fannkuchredux.gnat-3.gnat_run
x86_64-linux-gnu-gcc-9 -c -O3 -fomit-frame-pointer -march=core2 -gnatNp fannkuchredux.adb
x86_64-linux-gnu-gnatbind-9 -x fannkuchredux.ali
x86_64-linux-gnu-gnatlink-9 fannkuchredux.ali -O3 -fomit-frame-pointer -march=core2 -o fannkuchredux.gnat-3.gnat_run
5.13s to complete and log all make actions
COMMAND LINE:
./fannkuchredux.gnat-3.gnat_run 12
PROGRAM OUTPUT:
3968050
Pfannkuchen(12) = 65