The Computer Language
24.12 Benchmarks Game

fannkuch-redux Lisp SBCL #4 program

source code

;;   The Computer Language Benchmarks Game
;;   https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
;;;
;;; By Jon Smith (rev 4)
;;; 
;;; This is a multi core implementation. It should be quite fast.
;;; It is now a mix of multiple techniques stolen from a number of other implementations.
;;; (It is essentially based on every other implementation available)
;;;
;;; To compile
;;; sbcl --load fannkuch.lisp --eval "(save-lisp-and-die \"fannkuch.core\" :purify t :toplevel (lambda () (main) (quit)))"
;;; To run
;;; sbcl --noinform --core fannkuch.core %A
;(setf *efficiency-note-cost-threshold* 1)
;(setf *efficiency-note-limit* 8)

(declaim (optimize (speed 3) (safety 0) (space 1) (debug 0)))

(defmacro sb (a) `(the fixnum ,a))
(deftype sb () 'fixnum)

(defmacro setlambda(n)
  (declare (type fixnum n))
  (let ((copy (gensym))
	(perm (gensym)))
  `(lambda (,perm ,copy)
     (declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
      (type (simple-array sb (,n)) ,copy ,perm))
     ,@(loop for i of-type fixnum from 0 below n collect
	    `(setf (aref ,copy ,i) (aref ,perm ,i))))))

(defmacro countfliplambda (n)
  (declare (type fixnum n))
  (let ((copy (gensym))
	(c (gensym))
	(z (gensym)))
    `(lambda (,copy &aux (,c 0))
       (declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
		(type sb ,c)
		(type (simple-array sb (,n)) ,copy))
       (let ((,z (aref ,copy 0)))
	 (loop until (= ,z 0) do
	      (progn
		(case ,z 
		  ,@(loop for i of-type sb from 1 to (- n 1) collect
			 `(,i
			   ,@(loop for j of-type sb from 0 to (ash i -1)
				if (not (= j (- i j)))
				collect `(rotatef (aref ,copy ,j) 
						  (aref ,copy ,(- i j)))))))
		(incf ,c)
		(setf ,z (aref ,copy 0)))))
       ,c)))
(eval-when (:compile-toplevel :load-toplevel :execute)
  (defun factorial (n)
    (declare (type fixnum n))
    (if (> n 2)
	(* n (factorial (- n 1)))
	n)))

(let ((factorial-array (apply #'vector (loop for i from 1 to 16 collect (factorial i)))))
  (declare (type (simple-array fixnum (*))))
  (defun pre-computed-factorial (n)
    (declare (type fixnum n))
    (aref factorial-array (- n 1))))


(defun nth-permutation (perm copy count idx &optional (len (length perm)))
  (declare (type (simple-array fixnum (*)) perm copy count)
	   (type fixnum idx len))
  (loop for i from 0 below len do (setf (aref perm i) i))
  (loop for i of-type fixnum from (- len 1) above 0 do
       (let ((d (truncate idx (the fixnum (pre-computed-factorial i)))))
	 (declare (type fixnum d))
	 (setf (aref count i) d)
	 (setf idx (the fixnum (mod idx (the fixnum(pre-computed-factorial i)))))
	 (loop for m of-type fixnum from 0 to i do (setf (aref copy m) (aref perm m)))
	 (loop for j of-type fixnum from 0 to i do
	      (if (<= (+ j d) i)
		  (setf (aref perm j) (aref copy (+ j d)))
		  (setf (aref perm j) (aref copy (- (sb (+ j d)) i 1))))))))

(defun next-permutation (perm count)
  (Declare (type (simple-array sb (*)) perm count))
  (let ((first (aref perm 1)))
    (setf (aref perm 1) (aref perm 0))
    (setf (aref perm 0) first)
    (let ((i 1))
      (incf (aref count i))
      (do ()
	  ((not (> (aref count i) i)))
	(setf (aref count i) 0)
	(incf i)
	(setf (aref perm 0) (aref perm 1))
	(let ((next-first (aref perm 1)))
	  (loop for j from 1 below i do
	       (setf (aref perm j) (aref perm (+ j 1))))
	  (setf (aref perm i) first)
	  (setf first next-first))
	(incf (aref count i))))))



(defun fannkuch (n)  
  (declare (type fixnum n))
  (flet ((fannkuch-sub (n cflip copyfn start end)
	   (declare (type sb n start end)
		    (type (function ((simple-array sb (*)))) cflip)
		    (type (function ((simple-array sb (*)) (simple-array sb (*)))) copyfn))
	   (let ((csum 0)
		 (fmax 0)
		 (count (make-array n :element-type 'fixnum))
		 (copy (make-array n :element-type 'fixnum))
		 (perm (make-array n :element-type 'fixnum)))
	     (declare (type (simple-array sb (*)) perm copy count)
		      (type sb  csum fmax))
	     (nth-permutation perm copy count start n)
	     (dotimes (i (- end start))
	       (funcall copyfn perm copy)
	       (let ((c (funcall cflip copy)))
		 (declare (type sb c))
		 (setf csum (sb (+ csum  (sb (if (evenp i) c (- c))))))
		 (when (> c fmax)
		   (setf fmax c)))
	       (when (< (+ 1 i) end)
		 (next-permutation perm count)))
	     (values csum fmax))))


    (let* ((cflip (the (function ((simple-array sb (*)))) (eval `(countfliplambda ,n))))
	   (copyfn (the (function ((simple-array sb (*)) (simple-array sb (*)))) (eval `(setlambda ,n))))
	   (csum 0) (fmax 0))
      (declare (type sb csum fmax))
      #-sb-thread (multiple-value-setq (csum fmax) (fannkuch-sub n cflip copyfn 0 (pre-computed-factorial n)))

      #+sb-thread
      (let* ((cores 4)
	     (index 0)
	     (index-step (truncate (the fixnum (+ (the fixnum (pre-computed-factorial n)) (- cores 1))) cores))
	     (threads (loop for i from 0 below cores
			 collecting  (sb-thread:make-thread (let ((start index) (end (+ index index-step)))
							      (declare (fixnum start end))
							      (lambda () (fannkuch-sub n cflip copyfn start end))))
			 do (The fixnum (incf index index-step)))))
	(declare (type fixnum cores index index index-step))
	(dolist (thread threads) 
	  (multiple-value-bind (sum max) (sb-thread:join-thread thread)
	    (declare (type fixnum sum max))
	    (incf csum sum)
	    (when (> max fmax)
	      (setf fmax max)))))
      (format t "~s~%Pfannkuchen(~s) = ~s~%" csum n fmax))))

(defun main ()  
  (let* ((args (cdr sb-ext:*posix-argv*))
         (n (parse-integer (car args))))
    (declare (type fixnum n))
    (fannkuch n)))
    

notes, command-line, and program output

NOTES:
64-bit Ubuntu quad core
SBCL 2.4.8


 Fri, 06 Sep 2024 21:03:12 GMT

MAKE:
cp: 'fannkuchredux.sbcl-4.sbcl' and './fannkuchredux.sbcl-4.sbcl' are the same file
SBCL built with: /opt/src/sbcl-2.4.8/bin/sbcl --userinit /dev/null --batch --eval '(load "fannkuchredux.sbcl-4.sbcl_compile")'
### START fannkuchredux.sbcl-4.sbcl_compile
(handler-bind ((sb-ext:defconstant-uneql      (lambda (c) (abort c))))      (require :sb-concurrency)      (load (compile-file "fannkuchredux.sbcl-4.sbcl" ))) (save-lisp-and-die "sbcl.core" :purify t)
### END fannkuchredux.sbcl-4.sbcl_compile

; compiling file "/home/dunham/all-benchmarksgame/benchmarksgame_i53330/fannkuchredux/tmp/fannkuchredux.sbcl-4.sbcl" (written 26 APR 2018 12:47:38 PM):

; file: /home/dunham/all-benchmarksgame/benchmarksgame_i53330/fannkuchredux/tmp/fannkuchredux.sbcl-4.sbcl
; in: DEFUN FACTORIAL
;     (* N (FACTORIAL (- N 1)))
; 
; note: forced to do GENERIC-* (cost 30)
;       unable to do inline fixnum arithmetic (cost 2) because:
;       The second argument is a NUMBER, not a FIXNUM.
;       The result is a (VALUES NUMBER &OPTIONAL), not a (VALUES FIXNUM &OPTIONAL).
;       unable to do inline (signed-byte 64) arithmetic (cost 4) because:
;       The second argument is a NUMBER, not a (SIGNED-BYTE 64).
;       The result is a (VALUES NUMBER &OPTIONAL), not a (VALUES (SIGNED-BYTE 64)
;                                                                &OPTIONAL).
;       etc.

; file: /home/dunham/all-benchmarksgame/benchmarksgame_i53330/fannkuchredux/tmp/fannkuchredux.sbcl-4.sbcl
; in: DEFUN FANNKUCH
;     (PRE-COMPUTED-FACTORIAL N)
; 
; caught STYLE-WARNING:
;   undefined function: COMMON-LISP-USER::PRE-COMPUTED-FACTORIAL

; in: DEFUN NTH-PERMUTATION
;     (PRE-COMPUTED-FACTORIAL I)
; 
; caught STYLE-WARNING:
;   undefined function: COMMON-LISP-USER::PRE-COMPUTED-FACTORIAL
; 
; compilation unit finished
;   Undefined function:
;     PRE-COMPUTED-FACTORIAL
;   caught 2 STYLE-WARNING conditions
;   printed 1 note


; wrote /home/dunham/all-benchmarksgame/benchmarksgame_i53330/fannkuchredux/tmp/fannkuchredux.sbcl-4.fasl
; compilation finished in 0:00:00.161
### START fannkuchredux.sbcl-4.sbcl_run
(main) (quit)
### END fannkuchredux.sbcl-4.sbcl_run


2.59s to complete and log all make actions

COMMAND LINE:
 /opt/src/sbcl-2.4.8/bin/sbcl  --noinform --core sbcl.core --userinit /dev/null --load fannkuchredux.sbcl-4.sbcl_run 12

PROGRAM OUTPUT:
3968050
Pfannkuchen(12) = 65