source code
// The Computer Language Benchmarks Game
// https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
//
// Contributed by Cliff L. Biffle, translated from Jeremy Zerfas's C program.
//
// The C program was based on the Ada program by Jonathan Parker and Georg
// Bauhaus which in turn was based on code by Dave Fladebo, Eckehard Berns,
// Heiner Marxen, Hongwei Xi, and The Anh Tran and also the Java program by Oleg
// Mazurov.
extern crate rayon;
use rayon::prelude::*;
use std::mem::replace;
// This value controls how many blocks the workload is broken up into (as long
// as the value is less than or equal to the factorial of the argument to this
// program) in order to allow the blocks to be processed in parallel if
// possible. PREFERRED_NUMBER_OF_BLOCKS_TO_USE should be some number which
// divides evenly into all factorials larger than it. It should also be around
// 2-8 times the amount of threads you want to use in order to create enough
// blocks to more evenly distribute the workload amongst the threads.
const PREFERRED_NUMBER_OF_BLOCKS_TO_USE: usize = 12;
// One greater than the maximum `n` value. Used to size stack arrays.
const MAX_N: usize = 16;
fn main() {
let n = std::env::args().nth(1).unwrap().parse().unwrap();
// This assert eliminates several bounds checks.
assert!(n < MAX_N);
// Create and initialize factorial_lookup_table.
let factorial_lookup_table = {
let mut table: [usize; MAX_N] = [0; MAX_N];
table[0] = 1;
for i in 1..MAX_N {
table[i] = i * table[i - 1];
}
table
};
// Determine the block_size to use. If n! is less than
// PREFERRED_NUMBER_OF_BLOCKS_TO_USE then just use a single block to prevent
// block_size from being set to 0. This also causes smaller values of n to
// be computed serially which is faster and uses less resources for small
// values of n.
let block_size =
1.max(factorial_lookup_table[n] / PREFERRED_NUMBER_OF_BLOCKS_TO_USE);
let block_count = factorial_lookup_table[n] / block_size;
// Iterate over each block.
let (checksum, max_flip_count) = (0..block_count)
.into_par_iter()
.map(|bn| {
let initial_permutation_index = bn * block_size;
let mut count: [usize; MAX_N] = [0; MAX_N];
let mut current_permutation: [u8; MAX_N] =
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];
// Initialize count and current_permutation.
{
let mut temp_permutation: [u8; MAX_N] = [0; MAX_N];
let mut permutation_index = initial_permutation_index;
for i in (1..n).rev() {
let f = factorial_lookup_table[i];
let d = permutation_index / f;
count[i] = d;
// Rotate the permutation left by d places. This is faster
// than using slice::rotate_left.
temp_permutation[0..=i - d]
.copy_from_slice(¤t_permutation[d..=i]);
temp_permutation[i - d + 1..=i]
.copy_from_slice(¤t_permutation[..d]);
current_permutation = temp_permutation;
permutation_index = permutation_index % f;
}
}
let mut max_flip_count = 0;
let mut checksum = 0;
// Iterate over each permutation in the block.
let last_permutation_index = initial_permutation_index + block_size;
for permutation_index in
initial_permutation_index..last_permutation_index
{
// If the first value in the current_permutation is not 1 (0)
// then we will need to do at least one flip for the
// current_permutation.
if current_permutation[0] > 0 {
// Make a copy of current_permutation[] to work on.
let mut temp_permutation = current_permutation;
let mut flip_count: usize = 1;
// Flip temp_permutation until the element at the
// first_value index is 1 (0).
let mut first_value = current_permutation[0] as usize & 0xF;
while temp_permutation[first_value] > 0 {
// Record the new_first_value and restore the old
// first_value at its new flipped position.
let new_first_value = replace(
&mut temp_permutation[first_value],
first_value as u8,
);
// If first_value is greater than 3 (2) then we are
// flipping a series of four or more values so we will
// also need to flip additional elements in the middle
// of the temp_permutation.
if first_value > 2 {
for (low_index, high_index) in
(1..first_value).zip((1..first_value).rev())
{
temp_permutation.swap(high_index, low_index);
if low_index + 3 > high_index {
break;
}
}
}
// Update first_value to new_first_value that we
// recorded earlier.
first_value = new_first_value as usize & 0xF;
flip_count += 1;
}
// Update the checksum.
if permutation_index % 2 == 0 {
checksum += flip_count;
} else {
checksum -= flip_count;
}
// Update max_flip_count if necessary.
max_flip_count = max_flip_count.max(flip_count);
}
// Generate the next permutation.
current_permutation.swap(0, 1);
let mut first_value = current_permutation[0];
for i in 1..MAX_N - 2 {
count[i] += 1;
if count[i] <= i {
break;
}
count[i] = 0;
let new_first_value = current_permutation[1];
for j in 0..i + 1 {
current_permutation[j] = current_permutation[j + 1];
}
current_permutation[i + 1] = first_value;
first_value = new_first_value;
}
}
(checksum, max_flip_count)
})
.reduce(
|| (0, 0),
|(cs1, mf1), (cs2, mf2)| (cs1 + cs2, mf1.max(mf2)),
);
// Output the results to stdout.
println!("{}", checksum);
println!("Pfannkuchen({}) = {}", n, max_flip_count);
}
notes, command-line, and program output
NOTES:
64-bit Ubuntu quad core
1.83.0
(90b35a623
2024-11-26)
LLVM version: 19.1.1
Sat, 14 Dec 2024 20:01:39 GMT
MAKE:
/opt/src/rust-1.83.0/bin/rustc -C opt-level=3 -C target-cpu=ivybridge -C codegen-units=1 -L /opt/src/rust-libs fannkuchredux.rs -o fannkuchredux.rust-5.rust_run
10.90s to complete and log all make actions
COMMAND LINE:
./fannkuchredux.rust-5.rust_run 12
PROGRAM OUTPUT:
3968050
Pfannkuchen(12) = 65