fannkuch-redux C gcc #5 program
source code
// The Computer Language Benchmarks Game
// https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
//
// Contributed by Jeremy Zerfas
// Based on the Ada program by Jonathan Parker and Georg Bauhaus which in turn
// was based on code by Dave Fladebo, Eckehard Berns, Heiner Marxen, Hongwei Xi,
// and The Anh Tran and also the Java program by Oleg Mazurov.
// This value controls how many blocks the workload is broken up into (as long
// as the value is less than or equal to the factorial of the argument to this
// program) in order to allow the blocks to be processed in parallel if
// possible. PREFERRED_NUMBER_OF_BLOCKS_TO_USE should be some number which
// divides evenly into all factorials larger than it. It should also be around
// 2-8 times the amount of threads you want to use in order to create enough
// blocks to more evenly distribute the workload amongst the threads.
#define PREFERRED_NUMBER_OF_BLOCKS_TO_USE 12
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
// intptr_t should be the native integer type on most sane systems.
typedef intptr_t intnative_t;
int main(int argc, char ** argv){
const intnative_t n=atoi(argv[1]);
// Create and initialize factorial_Lookup_Table.
intnative_t factorial_Lookup_Table[n+1];
factorial_Lookup_Table[0]=1;
for(intnative_t i=0; ++i<=n;)
factorial_Lookup_Table[i]=i*factorial_Lookup_Table[i-1];
// Determine the block_Size to use. If n! is less than
// PREFERRED_NUMBER_OF_BLOCKS_TO_USE then just use a single block to prevent
// block_Size from being set to 0. This also causes smaller values of n to
// be computed serially which is faster and uses less resources for small
// values of n.
const intnative_t block_Size=factorial_Lookup_Table[n]/
(factorial_Lookup_Table[n]<PREFERRED_NUMBER_OF_BLOCKS_TO_USE ?
1 : PREFERRED_NUMBER_OF_BLOCKS_TO_USE);
intnative_t maximum_Flip_Count=0, checksum=0;
// Iterate over each block.
#pragma omp parallel for \
reduction(max:maximum_Flip_Count) reduction(+:checksum)
for(intnative_t initial_Permutation_Index_For_Block=0;
initial_Permutation_Index_For_Block<factorial_Lookup_Table[n];
initial_Permutation_Index_For_Block+=block_Size){
intnative_t count[n];
int8_t temp_Permutation[n], current_Permutation[n];
// Initialize count and current_Permutation.
count[0]=0;
for(intnative_t i=0; i<n; ++i)
current_Permutation[i]=i;
for(intnative_t i=n-1,
permutation_Index=initial_Permutation_Index_For_Block; i>0; --i){
const intnative_t d=permutation_Index/factorial_Lookup_Table[i];
permutation_Index=permutation_Index%factorial_Lookup_Table[i];
count[i]=d;
for(intnative_t j=0; j<n; ++j)
temp_Permutation[j]=current_Permutation[j];
for(intnative_t j=0; j<=i; ++j)
current_Permutation[j]= j+d<=i ?
temp_Permutation[j+d] : temp_Permutation[j+d-i-1];
}
// Iterate over each permutation in the block.
const intnative_t last_Permutation_Index_In_Block=
initial_Permutation_Index_For_Block+block_Size-1;
for(intnative_t permutation_Index=initial_Permutation_Index_For_Block; ;
++permutation_Index){
// If the first value in the current_Permutation is not 1 (0) then
// we will need to do at least one flip for the current_Permutation.
if(current_Permutation[0]>0){
// Make a copy of current_Permutation[] to work on. Note that we
// don't need to copy the first value since that will be stored
// in a separate variable since it gets used a lot.
for(intnative_t i=0; ++i<n;)
temp_Permutation[i]=current_Permutation[i];
intnative_t flip_Count=1;
// Flip temp_Permutation until the element at the first_Value
// index is 1 (0).
for(intnative_t first_Value=current_Permutation[0];
temp_Permutation[first_Value]>0; ++flip_Count){
// Record the new_First_Value and restore the old
// first_Value at its new flipped position.
const int8_t new_First_Value=temp_Permutation[first_Value];
temp_Permutation[first_Value]=first_Value;
// If first_Value is greater than 3 (2) then we are flipping
// a series of four or more values so we will also need to
// flip additional elements in the middle of the
// temp_Permutation.
if(first_Value>2){
intnative_t low_Index=1, high_Index=first_Value-1;
// Note that this loop is written so that it will run at
// most 16 times so that compilers will be more willing
// to unroll it. Consequently this won't work right when
// n is greater than 35. This would probably be the
// least of your concerns since 21! won't fit into 64
// bit integers and even if it did you probably wouldn't
// want to run this program with a value that large
// since it would take thousands of years to do on a
// modern desktop computer. ;-)
do{
const int8_t temp=temp_Permutation[high_Index];
temp_Permutation[high_Index]=
temp_Permutation[low_Index];
temp_Permutation[low_Index]=temp;
}while(low_Index+++3<=high_Index-- && low_Index<16);
}
// Update first_Value to new_First_Value that we recorded
// earlier.
first_Value=new_First_Value;
}
// Update the checksum.
if(permutation_Index%2==0)
checksum+=flip_Count;
else
checksum-=flip_Count;
// Update maximum_Flip_Count if necessary.
if(flip_Count>maximum_Flip_Count)
maximum_Flip_Count=flip_Count;
}
// Break out of the loop when we get to the
// last_Permutation_Index_In_Block.
if(permutation_Index>=last_Permutation_Index_In_Block)
break;
// Generate the next permutation.
int8_t first_Value=current_Permutation[1];
current_Permutation[1]=current_Permutation[0];
current_Permutation[0]=first_Value;
for(intnative_t i=1; ++count[i]>i;){
count[i++]=0;
const int8_t new_First_Value=current_Permutation[0]=
current_Permutation[1];
for(intnative_t j=0; ++j<i;)
current_Permutation[j]=current_Permutation[j+1];
current_Permutation[i]=first_Value;
first_Value=new_First_Value;
}
}
}
// Output the results to stdout.
printf("%jd\nPfannkuchen(%jd) = %jd\n", (intmax_t)checksum, (intmax_t)n,
(intmax_t)maximum_Flip_Count);
return 0;
}
notes, command-line, and program output
NOTES:
64-bit Ubuntu quad core
gcc (Ubuntu 14.2.0-4ubuntu2) 14.2.0
Tue, 22 Oct 2024 18:48:30 GMT
MAKE:
/usr/bin/gcc -pipe -Wall -O3 -fomit-frame-pointer -march=ivybridge -fopenmp fannkuchredux.gcc-5.c -o fannkuchredux.gcc-5.gcc_run
rm fannkuchredux.gcc-5.c
2.61s to complete and log all make actions
COMMAND LINE:
./fannkuchredux.gcc-5.gcc_run 12
PROGRAM OUTPUT:
3968050
Pfannkuchen(12) = 65